National Hog Farmer is part of the Informa Markets Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Feeder pigs National Pork Board

K-State research shows liquid additives may mitigate ASF risk in feed

Niederwerder's team examined two different classes of liquid feed additives for efficacy against African swine fever virus in cell culture, feed ingredients.

New research at Kansas State University is demonstrating that the risk of spreading a deadly animal virus through feed can be effectively reduced through the use of different feed additives.

African swine fever is a rapidly spreading and emerging transboundary animal disease that threatens pork production and human food security worldwide. Although the ASF virus does not affect humans, it has reduced pork availability in some countries with afflicted pigs.

The K-State research team, headed by Megan Niederwerder, assistant professor of diagnostic medicine and pathobiology in the College of Veterinary Medicine, has published a new study, "Mitigating the risk of African swine fever virus in feed with antiviral chemical additives," in the scientific journal Transboundary and Emerging Diseases. This study provides the first evidence that feed additives may be effective tools against ASF.

"Over the last two years, ASF is estimated to be responsible for the death of at least 25% of the world's pig population due to the emergence of the virus within China and subsequent spread to over 10 other Asian countries," Niederwerder says. "In 2019, we published the first report of African swine fever virus, or ASFV, transmission through the natural consumption of plant-based feed. Our subsequent work has focused on mitigation of ASFV in feed through the use of chemical feed additives and heat treatment."

Although feed additives have historically been used to reduce the risk of bacterial contamination in feed, research thus far has not reported efficacy for the inactivation of ASFV in feed ingredients. Niederwerder says there are currently no commercially available vaccines and no effective treatments that can be administered to pigs for ameliorating disease caused by the virus. Thus, control of ASF is focused on biosecurity measures to prevent the introduction of the virus into negative countries or negative farms and regions within a positive country. The other method of containment would involve large-scale culling of infected or high-risk animals to contain the spread of the virus.

"Our new research reports novel data evaluating the efficacy of feed additives on inactivating ASFV in an in vitro cell culture model and a feed ingredient transoceanic shipment model," Niederwerder says. "This will provide valuable information to the swine industry with regards to mitigating the risk of potential routes for introduction and transmission of ASFV through feed and ingredients."

Niederwerder and her team examined two different classes of liquid feed additives, including a medium-chain fatty acid-based additive and a formaldehyde-based additive, for efficacy against ASFV in cell culture and in feed ingredients. In general, both chemical additives demonstrated evidence of reducing the virus infectivity, with data supporting dose-dependent efficacy.

This study was funded by a grant from the Swine Health Information Center and the State of Kansas National Bio and Agro-defense Facility Fund.

While the results of the study are promising, Niederwerder emphasizes the need for a multifaceted approach to reducing the risk of ASFV in feed, including sourcing ingredients from countries without the virus when possible, applying holding times to high-risk ingredients, and implementing consistent biosecurity protocols at the feed mill.

Source: Kansas State University, which is solely responsible for the information provided, and wholly owns the information. Informa Business Media and all its subsidiaries are not responsible for any of the content contained in this information asset.
Hide comments
account-default-image

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish