National Hog Farmer is part of the Global Exhibitions Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Logo to stop porcine epidemic diarrhea virus (PEDV)

Predicting PEDV: Researchers develop proof-of-concept algorithm

Ultimately, their model was able to predict PEDV outbreaks with approximately 80% accuracy.

Pork producers could soon get advance notice of a porcine epidemic diarrhea virus outbreak. North Carolina State University Veterinary Medicine researchers have developed a proof-of-concept algorithm that has potential for use in real-time prediction of PEDV and other disease outbreaks in food animals.

Gustavo Machado, assistant professor of population health and pathobiology at NC State and corresponding author of a paper describing the work, developed a pipeline utilizing machine-learning techniques to create an algorithm capable of predicting PEDV outbreaks in space and time.

Machado, with colleagues from the University of Minnesota and Brazil’s Universidade Federal do Rio Grande do Sul, used weekly farm-level incidence data from sow farms to create the model. The data included all pig movement types, hog density and environmental and weather factors such as vegetation, wind speed, temperature and precipitation.

The researchers looked at “neighborhoods” that were defined as a 10-kilometer radius around sow farms. They fed the model information about outbreaks, animal movements into each neighborhood and the environmental characteristics inside each neighborhood. Ultimately, their model was able to predict PEDV outbreaks with approximately 80 percent accuracy.

The most important risk factor for predicting PEDV spread was pig movement into and through the 10 km neighborhood, although neighborhood environment – including slope and vegetation – also influenced risk.

“This proof-of-concept model identified the PEDV spread bottleneck in North Carolina and allowed us to rank infection risk factors in order of importance,” Machado says. “As we get more data from other farm sites across the U.S., we expect the model’s accuracy to increase. Our end goal is to have near real-time risk predictions so that farmers and veterinarians can provide preventative care to high-risk areas and make decisions based on data.”

Next steps for the researchers include improving the model to predict a wider range of diseases and expanding it to include other industries, such as poultry. The work appears in Scientific Reports, and is supported by the National Pork Board and the Swine Health Information Center.

Source: North Carolina State University Veterinary Medicine, which is solely responsible for the information provided, and wholly owns the information. Informa Business Media and all its subsidiaries are not responsible for any of the content contained in this information asset.

Hide comments

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish